$^{/2019}/10.7$ 

# न्द्रिक्ष Brief



KRIHS POLICY BRIEF • No. 734

| 발행처 | 국토연구원 • 발행인 | 강현수 • www.krihs.re.l

# 친환경차 보급 확대에 따른 교통 분야 세입감소 대응방안

최재성 책임연구원

#### 요약

- 정부는 '전기·수소차 보급 확산을 위한 정책방향'(2018년)을 통해 신성장 동력을 확보하고 환경문제에 대응하고자 했으나 그에 따른 세입감소 대처방안 마련에는 미흡
- 2 국내 친환경차 보급상황을 추계하고 단계·시기별 세입감소 추이를 2050년까지 분석
  - (친환경차 보급추계) 친환경차는 2050년까지 현재 대비 24.6~37.4%까지 증가할 것으로 추정
  - (세입감소 추이) ① 이중지수평활법 적용 시 2020~2050년까지 친환경차 보유(자동차세·지방교육세 적용)· 운행(교통세·교육세·주행세 적용) 단계에서 48조 4천억 원(국세 22조 5천억 원, 지방세 25조 8천억 원)의 세입 감소, ② 정부정책 + ARIMA 모형 적용 시 보유·운행 단계에서 85조 1천억 원(국세 39조 8천억 원, 지방세 45조 3천억 원)의 세입이 감소될 예정
- ③ 친환경차에 '자동차주행거리세'(Vehicle Miles Traveled Tax) 적용 시 세입감소 추정
  - (운행단계) 전기차·수소차에 1km당 10원 부과 시 기존 감소액보다 약 45%, 15원 부과 시 60% 후반 수준으로 세입 부족이 완화되고 25원 부과 시 2017년 대비 약 10% 이상 세입 초과
  - (보유·운행 단계) 전기차·수소차에 1km당 30원 부과 시 기존 감소액보다 약 70% 후반, 35원 부과 시 90% 초반 수준으로 세입 부족이 완화되고 45원 부과 시 2017년 대비 약 15% 이상 세입 초과

#### 정책방안

- ① (자동차주행거리세 시행) '자동차주행거리세법'(가칭)을 만들어 전기차·수소차에 대해 1km 주행거리당 세율을 규정하고, 궁극적으로 모든 연료별 주행거리 기반의 조세체계 확대 구축
- ② (친환경차 등록세 시행) 친환경차는 「지방세법」 제127조 제3항에 의해 낮은 수준의 세액을 부담하므로 단계적으로 정상화하고, 해외사례를 벤치마킹해 '친환경차 등록세'(가칭) 등 새로운 제도 시행 고려
- ③ (시범사업 추진) 시범사업 시행 및 재원조성 등의 법적 근거를 마련하고, 이후 기초·광역 지자체를 대상으로 공모형 시범사업 추진을 통한 새로운 제도 시행의 효과 검증 실시
- ④ (내연기관차 산업 보호정책 마련) 친환경차 보급 확대에 따른 기존 주유소, LPG 충전소, 자동차정비업체 등의 내연기관차 산업 파괴에 대한 실태조사와 정책적 대응방안 등의 후속적인 대안마련 추진

## 1. 국내외 친환경차 보급동향과 재원이슈

#### 국내 친환경차 보급동향

2019년 5월 말 기준, 국내 전기차 보급대수는 약 6만 9천대, 수소차 보급대수는 약 1,900대 수준으로 자동차 에너지원 중에서 전기·수소가 차지하는 비중은 2015년 대비 각각 약 12,1배, 66배 증가

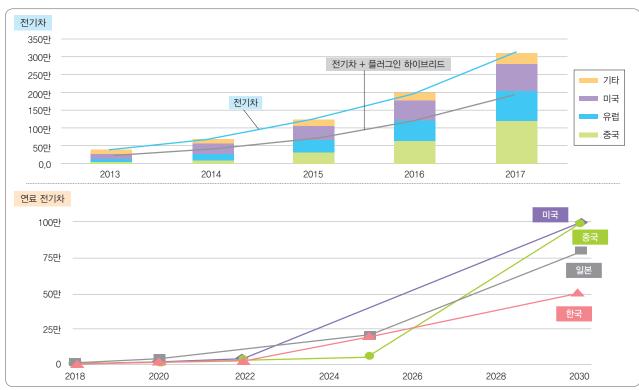
○ 전기차는 지역별 보급편차(1.1~24%)가 적으나, 수소차는 지역별로 수소차 보급 시범사업, 충전인프라 구축 등의 간극이 큰 상황(3개 시도가 전체 수소차의 74.4%, 7개 시도가 각각 약 0.5% 미만 차지)

혁신성장 관계장관회의(2018년 6월)에서 2022년까지 전기·수소차의 보급·확산(전기승용차 누적보급 35만대, 수소승용차 누적보급 1만 5천대)을 위한 세부정책 추진방향을 제시

○ 곧이어 '수소경제 활성화 로드맵'을 발표(2019년 1월), 2040년까지 수소승용차 275만대 생산을 추진

#### 그림 1 국내 친환경차 보급동향




주: 연도별 12월말 기준 누적 보급대수를 의미(2019년은 5월말 기준)하며, 2008~2009년 자료는 부재함. 출처: 국토교통부 통계누리의 '자동차 등록자료 통계'를 가공해 저자 작성.

#### 국외 친환경차 보급동향과 재원이슈

2017년 전 세계 전기차 보급대수는 2016년 대비 57% 증가한 약 310만대 수준이며, 전 세계 수소차 누적 보급대수는 2018년 12월말 기준으로 약 1만 1천대

- 2017년 전기차 판매대수 중 중국이 약 40%, 유럽과 미국은 각각 약 25% 수준을 차지
- 수소차 보급에 적극적인 수소차 선진 4개국의 누적 보급대수는 2030년까지 약 250만대 수준으로 추정

#### 그림 2 국외 친환경차 보급동향



출처: International Energy Agency 2018, 19; https://www.iea.org/tcep/energyintegration/hydrogen/ (2019년 7월 4일 검색).

#### 내연기관차의 연료세 급감에 대한 미국의 대응방안 사례 검토

- 미국에서는 현재 전기차 보급수준이 전체 등록차량 대비 1% 미만이지만 감소한 연료세의 규모는 연간 2억 5천만 달러 수준(Davis and Sallee 2019)
  - 이에 대응하고자 2018년 10월부터 21개주가 전기차 등의 친환경차에 기존 자동차를 대상으로 징수하는 등록비 외에 추가적인 친환경차 등록비용을 징수할 수 있도록 법을 제정
  - 또한 실제 도로이용자가 운행한 거리만큼 비용을 지불하는 '자동차주행거리세'(Vehicle Miles Traveled Tax)를 미국 내 다양한 주에서 시범사업으로 추진

단기적으로 국내에 친환경차 등록세 부과를 통한 추가적 세입 마련 방안을 마련하고, 중장기적으로 미국 내 추진 중인 시범사업과 주행세를 도입해 지속가능한 재원 마련을 고려

○ 친환경차는 연료세를 통한 도로인프라 이용에 대한 신규투자·유지보수 비용을 부담하지 않고 있으므로 이용자 형평성의 취지에 부합하게 과금을 고려할 필요

# 2. 친환경차 보급에 따른 세입감소 분석

#### 국내 친환경차 보급추계

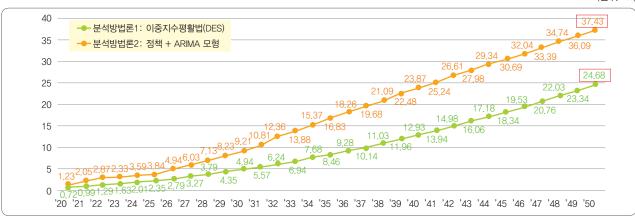
분석방법론 1(Double Exponential Smoothing: DES, 이중지수평활법)을 통한 과거추세 반영법과 분석방법론 2(정부 보급목표량 + Auto-regressive Integrated Moving Average: ARIMA) 모형을 병합해 추정하는 방법을 이용해 최종 추계치 도출

○ 분석방법론 1은 최근 데이터에 과거 시계열 대비 가중값을 높게 부여하고, 추세를 기반으로 예측치를 분석 하는 DES를 도입해 추정

$$L_t = \alpha Y_t + (1 - \alpha)(L_{t-1} + T_{t-1}), T_t = \beta(L_t + L_{t-1}) + (1 - \beta)T_{t-1}, \ \widehat{Y}_t = L_{t-1} + T_{t-1}$$

- \* 가중치는 과거로 회귀 시 지수적으로 감소하며,  $\hat{Y}_t$  는 시간 t에서의 예측치,  $L_t$  는 시간 t에서의 수준 성분,  $\alpha$  는 수준 성분에 대한 가중치,  $T_t$  는 시간 t에서의 추세,  $\beta$  는 추세에 대한 가중치를 의미
- 분석방법론 2는 친환경차 보급 관련 정부 계획과 과거데이터 추이를 결합하되, 일반적으로 시계열 계량경제 실증분석에서 많이 활용되는 ARIMA 모형을 도입해 추정

$$ARIMA(p,d,q): \Delta \ ^dY_t = \mu + \rho_1 \Delta \ ^dY_{t-1} + \ldots + \rho_p \Delta \ ^dY_{t-p} + \gamma_0 \epsilon_t + \ldots + \gamma_q \epsilon_{t-p}$$


\* 비안정적인 과거 관측값과 오차를 이용해 시계열를 예측하며, p는 AR 모형 차수, d는 차분 차수, q는 MA 모형 차수를 의미

추정된 친환경차(전기차 + 수소차) 보급대수 비중은 2019년 휘발유와 경유(LPG 제외)를 사용하는 승용· 승합차 총계(약 1,720만대)가 유지된다고 가정했을 때 연간 지속적으로 상승하는 것으로 분석

- \* 친환경차 차종은 화물·특수가 아닌 여객수송 목적의 승용·승합을 통합해 분석(2019년 5월 기준)
- 2050년 전체 자동차 보급대수에서 친환경차가 차지하는 비율은 분석방법론 1의 적용 시 24.6%, 분석방법론 2 적용 시 37.4%에 도달할 것으로 분석

#### 그림 3 전체 승용·승합차 대비 친환경차 보급비중 추이

(단위: %)



출처: 저자 작성.

#### 자동차 관련 세금 구조

#### 자동차 관련 세금은 구매·보유·운행 세 단계에서 거둬짐

- '환경친화적 자동차의 개발 및 보급에 관한 기본계획(2016~2020)'의 연차별 보급시행계획에 따라 한시적으로 구매단계에서 개별소비세·교육세·취득세 감면 시행
- 현재 보유단계에서 세금 관련 대비는 제도적으로 미흡하고, 운행단계에서는 준비가 전혀 안 된 상황

#### 그림 4 자동차 관련 단계별 세금 구조

| 구매                                                                             | 보유                          | 운행                                                                            |  |
|--------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------|--|
| <ul><li>개별소비세(국세)</li><li>교육세(국세)</li><li>부가가치세(국세)</li><li>취득세(지방세)</li></ul> | • 자동차세(지방세)<br>• 지방교육세(지방세) | <ul> <li>교통에너지환경세(휘발유 · 경유)(국세)</li> <li>교육세(국세)</li> <li>주행세(지방세)</li> </ul> |  |

주: 주행세는 지방세이지만 세입 전액이 버스·택시·화물차의 유가보조금 재원으로 사용됨. 국내에 현재 부과되는 주행세는 「지방세법」 제135조에 의해 시행되며, 교통세의 26%를 부과하는 것으로 미국에서 시범사업으로 추진 중인 도로이용자의 주행거리 기반 비용을 지불하는 자동차주행 거리세(Vehicle Miles Traveled Tax)와는 개념적으로 다른 것임.

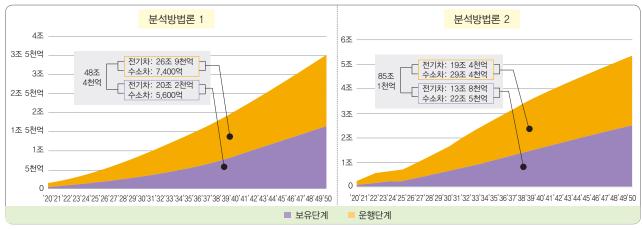
출처: 최준욱 이동규 2017, 90의 내용을 바탕으로 저자 재구성.

#### 세입감소 추정결과1)

분석공식을 분석방법론 1에 적용 시  $2020\sim2050$ 년까지 보유·운행 단계에서 48조 4천억 원, 분석방법론 2에 적용 시 보유·운행 단계에서 85조 1천억 원의 세입감소가 예상

- (분석방법론 1) 전기차는 2020~2050년까지 보유단계 20조 2천억 원, 운행단계 26조 9천억 원의 세입이 감소. 수소차는 보유단계에서 5.600억 원, 운행단계에서 7.400억 원의 세입이 감소될 것으로 추정
- (분석방법론 2) 전기차는 2020~2050년까지 보유단계 13조 8천억 원, 운행단계 19조 4천억 원의 세입이 감소, 수소차는 보유단계에서 22조 5천억 원, 운행단계에서 29조 4천억 원의 세입이 감소될 것으로 추정

$$\sum_{t=1}^{N}\left[\left(GVT_{t}-EVT_{t}\right)\right]+\sum_{t=1,\,r=\frac{N}{2}}^{N}\left\{\left(\text{주 행 거 리 }*\frac{1}{\text{ II 래 평 균 연 비}_{t}}\right)* 교통 \operatorname*{M}_{r}*EV_{t}*유종비율_{r}\right\}$$


\* GVT는 중형승용차 기준 자동차세 및 지방교육세, EVT는 전기 및 수소차의 자동차세 지방교육세, EV는 친환경자동차대수, t=2020,···,2050, r=휘발유 또는 경유를 의미

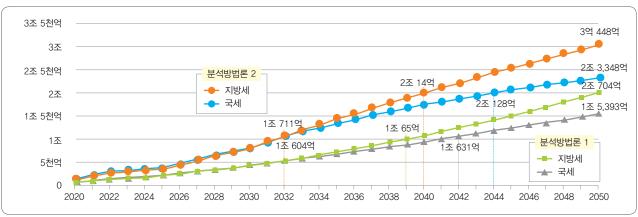
<sup>1)</sup> 이 연구에서는 Davis and Sallee(2019)의 분석방법론의 운영단계뿐만 아니라 보유단계를 포함해 분석공식(Formula)에 적용함.

## 국토정책 Brief

그림 5 2020~2050년 보유·운행 단계별 연간 세입 감소 전망(친환경차 보급전망 적용)

(단위: 원)




출처: 저자 작성.

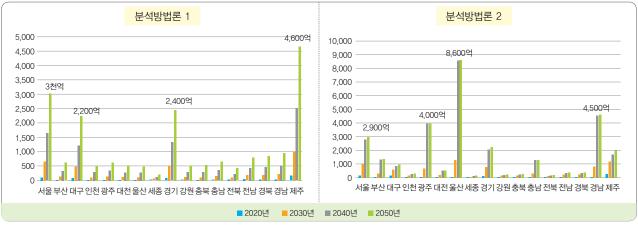
세입감소를 국세·지방세로 분류해 추정한 결과, 분석방법론 1 적용 시에는 국세가 22조 5천억 원, 지방세가 25조 8천억 원, 분석방법론 2 적용 시에는 국세가 39조 8천억 원, 지방세가 45조 3천억 원 감소 예상

- (분석방법론 1) 1조 원 이상 감소하는 연도가 국세는 2041년, 지방세는 2039년이며, 2050년에는 국세가 약 1조 5천억 원 이상, 지방세가 약 2조 원 이상 감소할 것으로 추정
- (분석방법론 2) 1조 원 이상 감소하는 연도가 국세와 지방세 모두 2032년이며, 국세는 2040년 중반, 지방세는 2040년부터 각각 약 2조 원 이상 감소 추정

그림 6 국세·지방세의 2050년까지 연간 감소액(친환경차 보급전망 적용)

(단위: 원)




출처: 저자 작성.

17개 광역지자체별로 세입감소를 추정한 결과, 분석방법론 1에서는 전기차 보급 전망치가 높은 제주도가 2050년 약 4.600억 원, 분석방법론 2에서는 수소차 보급 전망치가 높은 울산이 2050년 약 8.600억 원 감소

- (분석방법론 1) 제주도 다음으로 서울시가 약 3천억 원, 경기도 약 2,400억 원, 대구시 약 2,200억 원 등의 높은 순서로 지방세 감소 추정
- **(분석방법론 2)** 울산 다음으로 경상남도 약 4,500억 원, 광주시 약 4천억 원, 서울시 약 2,900억 원 등의 높은 순서로 지방세 감소 추정

#### 그림 7 17개 광역지자체별 10년 단위 지방세 감소액(친환경차 보급전망 적용)

(단위: 억원)



출처: 저자 작성.

2050년 교통·에너지·환경세, 교육세, 주행세, 자동차세, 지방교육세를 합친 전체 세입감소 규모는 분석방법론 1과 2에서 각각 약 3조원, 5조 3천억 원 이상 달할 것으로 분석

- 2050년 국세·지방세는 분석방법론 1에서 1조 3천억(교통·에너지·환경세), 2천억(교육세), 3천억(주행세), 1조 7천억(자동차·지방교육세) 원, 분석방법론 2에서 2조(교통·에너지·환경세), 3천억(교육세), 5천억(주행세), 2조 5천억(자동차·지방교육세) 원 이상 부족할 것으로 분석
- 교육세(15%) 및 주행세(26%)는 교통세의 일정비율로 징수돼 2050년에는 분석방법론 1과 2에서 2017년 대비 10% 이상 부족한 유사 패턴을 보이며, 자동차세 및 지방교육세는 분석방법론 2 적용 시 약 20% 이상 부족할 것으로 분석

### 3. 재원감소 대응방안 마련을 위한 정책제언

#### '자동차주행거리세'(Vehicle Miles Traveled Tax) 시행

'자동차주행거리세법'(가칭)을 만들어 전기차·수소차에 대해 1km 주행거리당 세율을 규정하고 궁극적으로 모든 연료별 주행거리 기반의 조세체계 구축

- 「교통세법」제2조(과세대상과 세율), 시행령 제3조(과세물품의 세목)에 전기차·수소차 관련 과세대상과 세율을 규정하기보다는 실제 주행한 거리를 이용자부담원칙에 따라 부담하도록 '자동차주행거리세' 법안 (미국 사례 참고) 마련을 고려
- \* 「교통세법」 유효기간은 2015년 12월 31일까지이나 폐지시한을 3년마다 연장해 2021년까지 유예
- '자동차주행거리세법' 내에 주행거리 기반의 세금부과·활용목적, 과세 대상·세율, 납세의무자·과세시기, 관리·감독 체계, 재원관리 등과 관련한 법률 내용을 제시
- \* 자동차 관련 운행단계의 세금은 전기차·수소차에 1km당 10원 부과 시 기존 감소액보다 약 45%, 15원 부과 시 60% 후반 수준으로 세입 부족이 완화되고 25원 부과 시 2017년 대비 약 10% 이상 세입 초과
- \* 보유·운행 단계 모두 고려 시 1km당 30원 부과 시 기존 감소액보다 약 70% 후반, 35원 부과 시 90% 초반 수준으로 세입 부족이 완화되고 45원 부과 시 2017년 대비 약 15% 이상 세입 초과

#### 친환경차 등록세 시행

국외 사례를 벤치마킹해 국내 실정에 부합하는 '친환경차 등록세'(가칭)의 적정 수준을 도출하고. 「지방세법」 내에 과세표준과 세율 등을 민·관 및 당·정·청이 협의해 근거 조항의 신설 추진

○ 친환경차는 연료세를 통한 도로인프라 이용에 대한 신규투자·유지보수 비용을 부담하지 않고 있으므로 「지방세법」 내 이용자 형평성의 취지에 부합하게 과금 고려 추진

#### 시범사업 추진

'자동차주행거리세법' 내에 시범사업 시행 및 재원조성 등의 법적 근거를 마련하고, 이후 기초·광역 지자체를 대상으로 공모형 시범사업 추진을 통해 효과 검증 실시

- 미국의 오리건·콜로라도·캘리포니아·텍사스 등과 같이 자동차주행거리세 시범사업 추진을 통해 제도· 기술적 문제점 등을 검토하고 운영·관리를 위한 빅데이터 축적 추진
- 미국에서 추진 중인 주행세 사례를 참고해 중앙·지방 정부 간의 매칭펀드식 사업 지원(연방 50%, 주 50%). 인센티브 도입의 성과평가 방식 등의 다양한 제도 설계를 벤치마킹해 시범사업 추진

#### 내연기관차 산업 보호정책 마련

친환경차 보급 확대에 따른 기존 주유소, LPG 충전소, 자동차정비업체 등의 내연기관차 산업 파괴에 대한 실태조사, 정책적 대응방안 등의 후속적인 대안마련 추진

○ 우선적으로 전기차·수소차 보급률이 가장 높은 제주도와 울산시의 경우, 친환경차 보급 확대로 기존 내연 기관차 관련 업종들의 장래 피해가 예상되므로 상생 발전을 위한 합리적인 대응방안 마련 추진

#### 참고문헌

관계부처 합동. 2018. 전기·수소차 보급 확산을 위한 정책방향, 6월 8일. 보도자료.

국토교통부 통계누리, 자동차 등록자료 통계.

최준욱·이동욱, 2017. 친환경차 확산 관련 조세제도의 정책방향, 세종: 한국조세재정연구원,

Davi, Lucas, and Sallee, James, 2019, Should Electric Vehicle Drivers Pay A Mileage Tax? NBER Working Papers no. 26072. Massachusetts: NBER.

International Energy Agency, 2018. Global EV Outlook 2018. Paris: International Energy Agency.

. 2019, Hydrogen, https://www.iea.org/tcep/energyintegration/hydrogen/ (2019년 7월 4일 검색).

※ 이 자료는 국토연구원에서 수시과제로 수행한 '최재성. 2019. 친환경차 보급 확대에 따른 교통 투자재원 파급영향 및 대응방안 연구. 세종: 국토연구원'(2019년 10월 말 발간 예정)의 내용을 요약 정리한 것임.

**최재성** 국토인프라연구본부 책임연구원(jaesung.choi@krihs.re.kr. 044-960-0346)



